반응형

전체 글 149

초신성 폭발 후에도 남는 ‘블랙홀 잔해’의 정체

초신성은 별의 삶에서 가장 극적인 사건 중 하나입니다. 그 중심에서 핵이 붕괴하면 남는 것은 항상 밝은 잔광만은 아니고, 때로는 보이지 않는 거대한 중력의 ‘심장’—블랙홀이 됩니다. 본문에서는 초신성 이후에 남는 블랙홀이 어떻게 만들어지는지, 어떤 물리적 상태(질량·스핀·주변 원반 등)로 존재하는지, 그리고 우리가 어떻게 그것들을 관측·추론하는지를 초등학생도 이해할 수 있게 차근차근 설명하겠습니다. ※ 아래는 초신성 폭발 이후 블랙홀과 주변 잔해(낙하 물질, 원반, 제트 등)가 어떻게 배치되는지를 개념적으로 표현한 이미지입니다.📑 목차초신성 중심부 붕괴: 블랙홀이 생기는 경우‘낙하(fallback)’와 남은 원반의 형성블랙홀 잔해의 구성 요소 — 질량·스핀·킥엔진 작동과 관측 신호: 제트, X선, 초신..

은하의 회전곡선이 암흑물질을 증명한 이유

은하의 회전곡선(observed rotation curves)은 눈에 보이는 별과 가스만으로는 설명할 수 없는 운동을 보여주며, 이 관측은 암흑물질(dark matter) 존재를 추론하는 가장 직접적이고 강력한 증거들 중 하나입니다. 본문에서는 회전곡선의 관측적 특성, 고전역학적 기대값과의 불일치, 암흑물질 헤일로(halo) 모델의 등장, 대안 이론과 추가적 독립 증거들(중력렌즈, 우주배경복사, 탄도 관측 등)을 차분히 정리합니다. 핵심 관측과 이론의 연결고리를 단계별로 설명하여 왜 회전곡선이 암흑물질의 ‘발견’으로 이어졌는지 이해하기 쉽게 풀어드리겠습니다. ※ 아래는 은하의 별빛 분포(가시광)과 실제 회전 속도의 차이를 보여주며, 암흑물질 헤일로가 은하를 둘러싸고 있음을 개념적으로 표현한 이미지입니다...

카테고리 없음 2025.09.18

항성 간 전파는 어떤 속도로 퍼질까?

항성 간(혹은 성간) 공간을 지나는 전파는 진공에서의 빛의 속도(c)에 매우 가깝게 이동하지만, 성간매질의 플라즈마 성질과 산란·흡수 과정 때문에 '절대적으로 c'와는 약간 다르게 행동합니다. 이 글에서는 그 차이가 어디에서 오고, 실제 관측에서 얼마나 눈에 띄는지(예: 펄서 신호나 FRB의 시간 지연)까지 단계적으로 설명합니다. ※ 아래는 성간 공간을 가로지르는 전파가 매질과 상호작용하면서 전달되는 모습을 개념적으로 표현한 이미지입니다.📑 목차빛의 속도와 '전파 속도'의 기본성간매질(ISM)의 성질 — 플라즈마와 전자밀도플라즈마에서의 전파 전달: 위상속도 vs 군속도디스퍼전(분산) — 주파수에 따른 지연의 원인과 수식산란·스키터링·광학적 두께: 신호의 퍼짐과 왜곡관측적 사례: 펄서·FRB에서 보이는 ..

카테고리 없음 2025.09.18
반응형